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Abstract

We present an iterative technique in which model check-

ing and static analysis are combined to verify large software

systems. The role of the static analysis is to compute partial

order information which the model checker uses to reduce

the state space. During exploration, the model checker also

computes aliasing information that it gives to the static an-

alyzer which can then refine its analysis. The result of this

refined analysis is then fed back to the model checker which

updates its partial order reduction. At each step of this it-

erative process, the static analysis computes optimistic in-

formation which results in an unsafe reduction of the state

space. However, we show that the process converges to a

fixed point at which time the partial order information is

safe and the whole state space is explored.

1 Introduction

In industrial settings, software verification consists al-

most entirely of testing. Formal analysis, be it based on

static analysis or model checking, is not considered practi-

cal for software applications. Fortunately, this situation is

slowly changing and more resources are devoted to improv-

ing the practicality of such analysis tools. For example, the
Java PathFinder (IPF) model checker has been applied to

the verification of critical avionics software [2, 11, t 3].

JPF is a model checker which operates on principles sim-

ilar to the SPIN model checker [7], i.e., given a closed envi-

ronment for software, it performs a systematic exploration

of the state space of the program by executing it. Therefore,
JPF has to deal with issues such as generating an environ-

ment to close a system, deriving finite models from infinite
state spaces, and curbing the state explosion problem (so

that exhaustive exploration can be performed). This work

focuses on alleviating the state explosion problem (i.e., the

model checker runs out of memory before it can explore the

whole state space) by using partial order reduction, which

eliminates the exploration of redundant paths due to the in-

terl, aving of independent transitions.

J PF relies on abstraction and static analysis to reduce

the dze of state spaces. Abstraction is used prior to model

che_ king; it generates a smaller program (meaning that it

yiel is a smaller state space than the original program) that
is a safe (it preserves the behaviors that are relevant to the

pro I erty under consideration) approximation of the original
pro_ ram. Static analysis is also used prior to model check-

ing to slice the original program [6] (yielding a smaller, safe

pro[ ram), and also, compute information needed to perform

part_ al order reduction during model checking. JPF has the

follc wing important (for this work) characteristics:

it is an explicit-state model checker for Java programs,

i.e., it uses a custom Java virtual machine to explore

states in a DFS manner and verify properties;

• it prunes on-the-fly the state space using partial order
reduction on safe transitions;

• it relies on static analysis to compute safe transitions.

T_Lis paper focuses on partial order reduction, and the

inter:_ctions between static analysis and model checking.

Sinct static analysis is used prior to model checking, partial

orde; analysis is subject to the following limitations of static

anal3 sis: no knowledge of the values taken by variables at
run t_me (even though we make limited use of symbolic

evalu ttion through the Bandera toolset [4]), approximations

inher .'nt to using the traditional datattow framework (e.g.,

wide_ dng or k-limiting), and, the fact that the precision of

static analysis is directly conditioned by the precision of its

aliasi,lg algorithm. Unfortunately, most practical alias anal-

yses ; re quite imprecise. JPF however can compute precise
aliasi,_g since it explores the state space by executing the

progr trn under all possible interleavings. Therefore, our

drivir g idea is to research how we can interface the static

analy:er and the model checker so that we can take advan-

tage c,f one's strengths to cancel the other's weaknesses.

In this paper, we show that the static analyzer and the
mode! checker can operate concurrently and reduce signif-

icantl' the size of the explored state space. The static an-



alyzercanusedynamicinformation(i.e.,aliassets)com-
putedbyJPFduringstateexplorationandstaticallycom-
putepartialorderinformationthatJPFcanusetoprunethe
statespace.Thealiasinginformationgiventothestatican-
alyzerisasubsetoftherealaliasset;therefore,staticanal-
ysismayproduceincorrectinformationaboutsafestate-
mentwhichJPFcannottrusttodefinitelydiscardexecution
paths.However,thisinformationcanbeusedtopickpaths
(thatarenotdiscardedbythecurrentpartialorderinfor-
mation)duringstateexploration.AsJPFcoversmoreof
thestatespace,it computesasaferaliasset(i.e.,closerto
therealaliasset),andin turn,thepartialorderinformation
computedbythestaticanalyzerissafer(i.e.,morerelevant
pathsgetincludedin theexploration).Eventually,thisiter-
ativeanalysisreachesafixedpoint(thealiassetisthecom-
pletealiassetforthecurrentenvironment),and,themodel
checkerknowsexactlywhatpathscansafelybediscarded.
Theinnovativenessofourworkis twofold:

1. weusestaticanalysisandmodelcheckingconcur-
rentlytoincreasetheirprecision,and

2. weperforma safeanalysisby computing(lessand
less)unsafeinformation.

Thepaperisorganizedasfollows.Section2describes
staticanalysisandpartialorderreduction.InSection3,we
formalizeourapproachandprovethatit yieldssafesolu-
tions.Wethendescribeanexample,discusssomepractical
considerations,andpresentourconclusions.

Therestofthepaperusesthefollowingnotations.State-
ments(alsoreferredtoastransitions)aredenotedbylower
caseletterssuchasn,re,p, .... The set of all statements is

called T. The thread of execution for a given statement n is

given by O(n). The state of the system is usually referenced

by the lower case letter s. The state reached from a state s
after statement n has been executed is denoted by n(s). The

set of all possible states is called ,5'. The set enabled(s) rep-
resents the set of statements that can be executed at state s,

i.e., the transitions that are enabled in state s. For a given

statement n, def(n) (ref(n))is the set of variables defined

(used) at n.

2 Static Analysis in JPF

Java PathFinder [2, 11, 13] is an explicit state model

checker that takes compiled Java programs (i.e., byte code

class-files) and analyze s all paths through the program
for deadlock, assertion violations and linear time temporal

logic (LTL) properties. JPF is built on a custom Java Virtual
Machine (IVM) and therefore does not require any transla-

tion to an existing model checker's input notation. Since
JPF is custom-made for Java model checking, it allows an

aggressive attack on the state-explosion problem inherent in

me +t complex Java programs. Importantly, the JPF model
che :ker has full control over which (Java) statements to ex-

ecu te in every state, and moreover, has the complete state of

the IVM at its disposal at all times during execution. These
two characteristics allows the implementation of the con-

cepts in this paper: partial-order reductions (only execute
cer ain transitions in each state) and calculation of alias in-

for: aation (present in the data-portion of the JVM state).

2.1 Partial Order Reduction

';b perform a correct verification of an asynchronous sys-
tem (in our case, a multi-threaded Java program), the model

che :ker has to explore all possible interleavings of concur-

rew transitions (i.e., concurrent statements) in the system.

Unl 3rtunately, the interleaving model yields a combinato-

rial explosion in the number of states that need to be ex-

plot ed. The goal of partial order reduction is to use the
con mutativity of concurrent transitions to reduce the state

spa, e that needs to be explored by a model checker.
t or example, a system consisting of two threads with

thre: transitions each, such that transitions in one thread

are ndependent from transitions in other threads, yields a

spat e consisting of 16 states and up to 20 different paths.
Hm ,ever, any such two paths differ by at most nine commu-

tatic ns of transitions (on different threads). If the property

che, ked by the model checker on this system is not sensi-
tive to those transitions, then the state space can be reduced

to ody one path, i.e., seven states.
/, s described in [3], two transitions are independentifthe

exe¢ ution of one does not disable the other (and vice versa)

(encbledness condition) and they result in the same state re-

garc less of their execution order (commutativity condition).

Deft nition 1 two transitions n and m are independent at a

give z state s if the following two conditions are satisfied:

1. n,m E enabled(s) _ n E enabled(re(s))

2. n,m C enabled(s) _ n(rn(s)) = re(n(s))

The e conditions define an independence relation between

pair of transitions (statements) that is symmetric and anti-
retie _ive. In [8], Holzmann and Peled extend this definition

of ir dependence with the concept of global independence.

Defi_aition 2 Two transitions n and re are globally inde-

pem ent if and only if they are independent in every state
whe e they are simultaneously enabled.

We need two other conditions to perform path elimina-

tion asing independence. First, transitions have to be invis-

ible with respect to the checked property, i.e, its execution

fron any state does not change the value of the proposi-
tiom 1variables in the property. Second, eliminating a path



shouldnoteliminateanotherpaththatbranchedoutofone
oftheintermediarystates.

Partialorderreductionisusuallyimplementedusingthe
concept of ample sets. An ample set at state s (denoted

ample(s)) is a subset of enabled(s). When operating in

a partial order reduction mode, the model checker will ex-

plore only paths, from a given state, that start with transi-
tions in the ample set rather than the enabled set. In other

words, given a state s, partial order reduction results in
the elimination of all the paths starting with transitions in

enabled(s) \ ample(s). According to [3], the following
conditions yield a correct ample set (s is a given state):

CO ample(s) = 0 ¢_ enabled(s) = 0;

C1 along every path in the full state graph that starts at
s, the following condition holds: a transition that is

dependent on a transition in ample(s) cannot be exe-
cuted without a transition in ample(s) occurring first;

C2 if s is not fully expanded, then every transition in

ample (s) is invisible; and,

C3 a cycle is not allowed if it contains a state in which
some transition is enabled but is never included in

ample(s) for any state s on the cycle.

Note that C1 implies that the transitions in enabled(s) \

ample(s) are independent of those in ample(s).

Verifying condition C1 is as hard as checking reachabil-

ity for the full state space (see Theorem 11, page 154 of [3]).
Moreover, the full state space is not available when ample

sets are computed during on-the-fly model checking as it
is the case in JPE Therefore, practical implementations of

partial order reduction need to use conditions that are easier
to check, even if they yield less reduction [3].

JPF relies on another concept based on safe transitions

[8]. In essence, a transition is safe if it is independent on

any transition of any other thread. A partial order reduction
scheme that uses only safe transitions in the ample set is

guaranteed to yield correct results.

Definition 3 Given a property P, statement n is safe if it is

invisible with respect to P and globally independent from

any m such that O(n) _ 0(m).

Practically, at any given state s, JPF looks for a safe transi-

tion in enabled(s) (the set of enabled transitions at s). If it
finds a safe transition, say t, JPF executes it and explores the

graph it creates. During backtracking, JPF ignores the paths
originated in the other transitions (enabled(s) \ {t}). If it

does not find any safe transition in the enabled set, all transi-

tions are explored. In other words, the ample set (ample(s))
is either the full enabled set (enabled(s)) or a singleton con-

taining one of the safe transitions in enabled(s). Contrary
to SPIN, JPF relies on a static analyzer to perform the de-

pendence analysis needed to identify safe statements.

22', Static Analysis

Fhis section describes how JPF uses static analysis to

co_ apute partial order information. We designed our analy-
sis based on the dependences defined in the Bandera toolset

[4] Hatcliff et el. defined six types of dependences [6].

Th "_reare three intra-thread dependences which are usually

fotnd in sequential programs, namely: data, control and

di_ "_rgence dependences. Since these dependences relate
sta ements within the same thread, they cannot be used to

ide ltify independent statements (see page 157 of [3]).

-Iatcliff et el. also define three types of dependences

(in erference, synchronization, and ready dependences) that

ca[ture concurrency issues. The interference dependence

ca[ tures the fact that shared variables can escape the scope
of t given thread. We give the formal definition of inter-

fer_ nee dependence because it is useful when it comes to

cor lputing partial order information.

Dei inition 4 A statement n is interference-dependent on a

sta ement m if

10(n) # o(m), and

2 def(rn) n ref(n) ¢ O.

No:e that def(m) and ref(n) need to take into account the

pos ;ible presence of aliases. Second, it is obvious that, if
n i interference-dependent on m, then n and m are not

glo _ally independent (they do not commute) with respect

to t artial order reduction. So, computing interference de-

pen tences gives important information about independence
witl_ regard to partial order reduction. However, interfer-

enc _"dependence is not quite restrictive enough to identify
saf_ statements. Therefore, we take a conservative approach

and consider that any statement defining or using (possibly

via m alias) a shared variable is unsafe. Our problem then

bec _mes analyzing statically a program to identify shared

vari lbles. This requires alias analysis.

t;oth the synchronization and ready dependence are ir-
rele _,ant to our discussion on partial order reduction. Syn-

chr, ,nization dependence exists to make sure that the mon-
itor: enclosing a statement that is in the slice are also in
the ;lice. Since the statements involved in synchronization

are n the same thread, they are already considered depen-

den with regard to partial order reduction, and we do not

nee, t to compute if statements are synchronization depen-

den. The ready dependence states that a statement n is

reac y-dependent on a statement m if m's failure to com-

plet _ can make O(n) block before reaching or completing
n. t. ccording to this definition, the execution of m does not

disa _le n; quite the contrary, it enables n. Therefore, ready

dep, ndence is irrelevant to the notion of dependence with

regz rd to partial order reduction.



If neithersynchronizationnorreadydependencesare
usefultoprovideinformationaboutindependencewithre-
gardto partialorderreduction,westill needtostudythe
synchronizationmeansinJavaandanalyzetheirimpacton
statementindependence.Forthat,wetakeacloserlook
atthesynchronizationcommandsidentifiedin [6]:namely,
enter-monitor, exit-monitor, wait, notify, and notify-all. The

first command (enter-monitor) is the only one that can dis-

able statements on different threads. Indeed, the execution

of enter-monitor prevents other threads to access the lock,

potentially disabling transitions on those threads (note that
it disables only statements that are attempting to acquire the

same lock; once again it is a shared object problem). The
exit-monitor, notify, and notify-all commands release locks;

therefore, without considering possible exception problems,
these commands do not disable other statements; they rather

enable some. Finally, the wait command does block the ex-

ecution of some statements, but only on the same thread,

which means that it can block only statements that have al-

ready been deemed dependent; therefore, we do not need to

pay special attention to wait commands.
The static analyzer does not really compute what state-

ments are safe. It identifies unsafe statements, and then

mark the other statements as safe. Here is the formal defi-

nition of an unsafe statement:

Theorem 1 A statement n is unsafe if

1. n is interference dependent on any other statement,

2. n is an enter-monitor statement, or

3. n is an invoke statement on a synchronized method.

Conditions 2 and 3 are stronger that they need to be. An

enter-monitor statement is unsafe only if there is another
enter-monitor statement on another thread attempting to

grab the same lock. Condition 2 takes a conservative ap-

proach and mark any enter-monitor statement as unsafe.
Similarly, condition 3 takes a conservative approach by

marking all invocations of synchronized methods as unsafe.

2.3 Implementation

Partial order reduction is performed on-the-fly by JPF

based on information computed by the static analyzer. As

illustrated in Figure 1, in the current implementation, static

analysis is done before model checking. The static analyzer
identifies a set of safe statements, which JPF uses to elim-

inate redundant paths. The static analyzer is run only once

(before any run of the model checker) and therefore it pro-
vides conservative results; it only computes a subset of the

ideal set of safe statements. This guarantees that all inter-

leavings that can affect the result of the verification process

are explored by JPE The precision of the analysis directly

aft :cts the number of paths that JPF can ignore. Therefore,

apl'roximations made by the static analyzer have a direct

im! ,act on the level of reduction achieved by JPE
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Figure 1. One-time partial order reduction.

l'artial order analysis depends on aliasing and call graph

ana yses; hence, it suffers from the approximation intro-
duced by those analyses. Unfortunately, aliasing analysis is

acc mplex problem [ 10]. For example, it has problems han-

dlin g possibly infinite data structures. Practical algorithms
rely on k-limiting schemes that differentiate aliases in lists

onl_ up to a depth of k [10]. Moreover, scalable algorithms

typi::ally do not differentiate between different calling con-
text [1, 12]. This leads us to believe that only limited par-

tial ,rder reduction can be achieved by using static analysis

as a pre-processing step.
('ur driving principle is based on two observations. First,

JPF -an compute precise aliasing (and call graph) informa-

tion while the static analyzer can only compute approxi-

mat, aliasing information. Therefore, JPF should be the one

corn rating the aliasing information. Second, JPF lacks a

glo_ al view of the synchronization in the system; it usually

con,:iders only one path of execution at a time and it does
not i ealize the synchronization problems until it bumps into

then. The static analyzer has a more abstract view of the

systt m, and given the proper aliasing information, it does
a go _d job at computing partial order information. There-

fore. it should be the one computing the independence sets.

TheJ _fore, it seems that, by working on different aspects of

the [ roblem, they could help each other and do a better job

than they do now. This paradigm is illustrated in Figure 2.

j_ _ yields t:_ State Space ]

parses enables pruning I lI explores

S_c Analyzer) compute_>[ Safe Stmts ] (Model Checker,)

t uses _ computes I

Figure 2. Iterative partial order reduction.

Tt:eoretically, this paradigm is attractive, but, practically,

it seems to be only realizable at the expense of safety (i.e.,



theverificationisoptimisticanddoesnotofferguarantees
evenif it terminates).Indeed,JPFcanonlycomputepar-
tial aliassetsasit exploresthestatespace.Onlywhen
it hascompletelyexploredthestatespacecanit compute
precisealiassets.Therefore,it seemsthat,inourscheme,
staticanalysiswouldalwaysbebasedonunsafealiassets,
andhence,produceonlyoverlyoptimisticsetsofsafestate-
ments.ThisimpliesthatJPFcouldpotentiallyignorerel-
evantpaths,andtherefore,misssomeerrors.Fortunately,
thisisnotsoasweproveinthenextsection.

At eachnewiteration,JPFaddsnewaliasesto the
aliassetsit computedduringpreviousiterations.These
newaliasesmayleadthestaticanalyzertore-classifysafe
statementsasunsafe(butneverunsafestatementsassafe).
Therefore,ateachnewiteration,thesetofsafestatementsis
asubsetof thesafestatementsatpreviousiterations.Each
timeastatementisre-classifiedfromsafetounsafe,it forces
JPFtoconsideradditionalpaths.Theiterationprocessstarts
withnoaliassets(oroneresultingfromamust-aliasanal-
ysis)andoptimisticsetsof safestatements.Theprocess
goesonuntilJPFhassafelyidentifiedallthealiasesin the
program.At thatpoint,JPFgivesanexactaliassettothe
staticanalyzer,whichin turncancomputeanexactsetof
safestatements.Thatsetis thenusedbyJPFtoidentify
exactlyalltherelevantremainingpaths.Theoverallverifi-.
cationprocessthenfinishesonceJPFhascoveredallrele-
vantpaths.All ofthisisvalidbecauseJPFnevercompletely
discardsapathuntilthewholeverificationprocessisover.

Theinnovativeaspectofourmethodis thatit performs
anoverallsafeanalysisoutofiterativeunsafeanalysissteps.
Moreoverif noapproximationsareintroducedbythestatic
analyzerwhencomputingthesetofsafestatements,thenit
resultsinanoptimalreductionofthestatespace.Thestate
spacesexploredbyJPFduringeachiteration(besidesthe
lastone)areonlypartialstatespaces.Therefore,stopping
atthesestagescouldyieldincorrectresults.Theoverall
processconvergestowardsanoptimal(in termsof partial
orderreduction)statespace.

Inthenextsection,wedescribeaframeworkthatformal-
izesthisapproach.Wethenuseit toprovethecorrectness
of thisapproach.In particular,weprovethattheiteration
processcannotfalselydetectthatanaliassetiscomplete
(whichcouldcauseanearlyterminationofthestateexplo-
rationandhenceyieldincorrectresults).

3 Formal Framework

3.1 Aliasing

In this section, we define aliasing and establish results on

the alias analysis done by JPE Formally, an alias at program

point t is a pair (u, v) of references ((u, v) E R 2 where R is
the set of references in the program) that point to the same

ste'e location. In other words, u and v give access to the

same object. We can represent all aliases in a program as a

ma 9ping of program points to alias sets as follows:

A: T _ 2RxR

t {(u,v)•R 2}

wh:re A(t) represents the set of aliases holding at program

poi at t. We define .A as the set of all possible alias mapping

for a given program. In the rest of the paper, we will refer
to. t • vl as the alias set of the program. We also define a

nat _ral partial order on ,4 as follows:

V(A,B) • A: A c_ B,* (Vt • T: A(t) c_ B(t)).

In he presence of dynamic information about finite pro-

grains, ..4 is finite. The number of references is bounded,
and therefore, there is a finite number of alias combinations.

",Veassume that at any given time during the analysis, we
can determine the set of states S e that have been explored by

JPF We also assume that JPF can reliably compute the set

of _,Iiases holding at any given state. Let fa (fa : S -_ .4)
be the function that allows JPF to extract aliases from a set

of explored states. Thus,

f_(S e) = A

wht re S e is the set of explored states and A is the set of

alia ;es for the current set of explored states. It is obvious

that f_ is monotonically increasing.

V(X, Y) • $2: X c_ Y :=_ f,_(X) C_ f_(Y) (1)

Indt ed, exploring more states does not eliminate aliases, it
onb adds more aliases.

3.2 Safe Statement Analysis

"_7e assume that the static analyzer has a consistent

mea as of computing the set of safe statements given an alias
set. Let fs (fs : A --+ T) be such a function. Thus,

fs(A) = I

whe e A is the current set of aliases in the program and I is

the _'et of safe (independent) statements that can be inferred

give a A. Obviously, fs is monotonically decreasing.

g(x, Y) • A 2 : X c_ Y => fs(Y) c_ fs(X) (2)

Adding an alias may create a new dependence among state-
men s, but it does not remove any. Therefore, it can only

charge a safe statement into an unsafe statement and can

never change an unsafe statement into a safe statement.
F lrthermore, let fr be the function (fr : T --+ S) that,

give _ a set I of safe statements, can compute the largest set
of slates S M = f,. (I) that can be explored by JPE It is

obvi ms that, at any given time, the set of state explored by

JPF say S e) is a subset ofS M.

S e C S M C S



3.3 Fixed Point Analysis

The analysis uses an iterative process which sees the

static analyzer compute independence sets and JPF bounds

on state exploration and alias sets. The process goes as fol-

lows (note: indices relate to iterations):

1. given an alias set Ak-1, the static analyzer computes

an independence set Ik = fs(Ak-1) while JPF is ex-
S M );ploring a confined state space (S__ 1 C k-1

2. then IPF uses Ik tO limit its exploration to a new con-

fined state space (S M = fi.(Ik)) by performing partial
order reduction;

3. JPF computes a set of aliases Ak given the state space

S_ it has explored (Ak = fa(S_) and S_ C_sM);k

4. the process goes back to Step 1 unless a fixed point has
been reached (Ak+l = Ak).

To show that a fixed point is reached, we define C =

(..4 x T x S x S) where any c C C consists of an alias
set, a set of safe statements, and confined and explored state

spaces. We also define a partial order relation _ over C:

Vcl = (A1, I1, S1M, St), c2 = (A2,/2, S M, S_) • C:

Cl _ C2 ¢:_

(A1 C_A2) A(I__D/2)A(S MCS M) A(S t_CS_)

The fact that E defines a partial order derives directly from

the fact that _Cis a partial order relation. Therefore, (C, _E)

is a partial ordered set (or poset). It is also easy to show that

Lemma 1 ( C, E_) is a complete lattice.

Proof: First, note that C is finite because T, S, and .4 are

finite. Therefore, we only have to show that the supremal

(sup Y) of a set Y C C is in C (and similarly for the infimal
of Y, inf Y). This is trivial since sup C = (A, 0, S, 5) C C

andinfC' = (0, T, 0,0) • C.

We now define a function f (f : C --,' C) that summa-

rizes the effects of an iteration. Thus,

Vc = (A,I, sM, s e) • C :

f(c) = (9 o f_(Se), fs(A), f_ o L(A), S e)

It is also trivial to show that, for any iteration k,

(Ak,/k,sM, s_) = f((Ak-l,Ik-1, sMk-1, S_-I))

and that, using (1) and (2), f is monotonically "increasing".

V(Cl,C2) • C: Cl E C2 =:_ 7(Cl) _ f(c2) (3)

Therefore, we can show that

Tl-,eorem 2 f has a supremal fixed point

Pr, mf: All we have to show is that

,, f is a monotone function (see (3))

,. f is defined over a complete lattice (C, _) (see Lemma

1). Then, according to Theorem 2.1 in [9], f admits a

supremal fixed point.

At his point, we have shown that our iterative verification

pro =ess will converge to a fixed point. We soil have to show

tha this fixed point corresponds to a correct analysis.

Th,._orem 3 After termination of the iterative process, all

reh vant paths have been explored.

Prt,of: Let P(S) be the set of paths in the full state space S.

Let P(SA) be the set of paths in the explored states space.
Let T be the set of all possible transitions. Let s(p) be a

fun :tion that returns the final state of a path p.

Assume that there exist paths that should have been ex-

ploJ ed but have been discarded by JPF based on the partial
or& _rinformation given by the static analyzer. Let p be the

first such path that could have been encountered by JPE

p • P(S) \ P(SA).

Let J • P(SA) be the explored path that "caused" p to
be c iscarded. Then, there exist two transitions t and t' and

thre _sub-paths Pl,/)2, and p_ such that

* p = pl.t.P2,

" P' = Pl.t'.P_,

• t, t' C enable(s(pl)), and

• t _was misclassified as safe.

If t' s not safe, then either t' is visible by the property being

chec _ed or it is not globally independent.

It is not possible for t' to he visible by the property be-

caus : it would imply that an alias at t' had been missed even

thou _h t' was executed by JPF; this violates the assumption

that: dias discovery on states visited by J'PF is correct.
Tmn, t' must not be globally independent. Moreover,

sinct p should have been explored, it means that t and t' are

not i adependent at state s(pl). This implies that t and t'
acce s a shared variable (or lock) through aliases and that at

least .me of these aliases is never uncovered during the anal-

ysis. However, such aliases result from the execution of the
last t ansition in Pl (i.e., the transition preceeding t in p and

t_ in )/). Since JPF has executed that transition, these aliases

woul t have been found by JPF (again, using the assump-

tion trot alias discovery on states visited by JPF is correct).



Therefore,therearenoaliasesaccessingasharedvariable
fromt andt', and t' is globally independent.

Therefore, p was rightly discarded by JPE We can repeat

this reasoning for every (wrongly discarded) path and prove

that all the relevant paths have been explored by JPE

4 Example

The example in Figure 3 is a simple multi-threaded pro-

gram that exhibits a subtle deadlock due to incorrect initial-
ization of variables. Essentially the deadlock is due to the

count variables in Taskl and Task2 not being initialized to

zero - the important statements that would need to be inter-
leaved in order to find this error are the assignments to the

count variables just prior to the while loop in each thread

(i.e., statements labeled ul and u2 in Figure 3).

class Main ( class Event {

static void reran(Stung[] args) { int count = 0;

Event new...evi = new Event(); synchronized void

Event new..ev2 = new Event(); waikfor_event(int rcount) {

Taskl taskl = if (rcount == count)

new Taskl(new_evl,newzev2); try { wait0;}

Task2 task2 = catch(ImerruptedException e){ };

new Task2(new_v 1,new-ev2); }

taskl.start0; synchronized void signal_event0 {

task2.start0; count = (count + 1) % 3;

} notifyAll0;

) )
}

class Taskl extends Thread { class Task2 extends Thread {

Event event 1,event2; Event eventl ,event2;

int count = 0; int count = 0;

Taskl (Event e I, Event e2) { Task2(Event el, Event e2) {

this.eventl = el; this.eventl = el ;

this.event2 = e2; this.event2 = e2;

this.start0; this.start0;

} )
void runO { void run0 {

ul : count = eventl.count; u2 : count = event2.count;

while(true) { while(true) {

event 1.walt_for_event(count ); event[ .signal. event();

count = eventl .count; event2.wait_for.event(count);

event2.signal-event0; count = event2.count;

) }
} )

} }

Figure 3. Java program with deadlock.

During the first iteration, the static analyzer does not
have any aliasing information. Let us examine the class

Task1. Even though the analyzer can determine that
the fields eventl and event2 are probably aliased to ob-

jects on different threads, it has no concrete proof that it

is happening (because it has no alias information at this

point). Therefore, the analyzer has no choice but to mark
all the statements dealing with those variables as safe, ex-

cept for the statements invoking the synchronized methods
wait_for_event and signal_event. In these cases, the an-

alyzer can infer that these invocations will ask for locks

(e_ _n though it does not know which locks) and we mark
su_ h calls as unsafe (without checking what object is used

as t lock). A similar analysis is done for the class Task2.
A1] statements in class Event are marked as safe (and will

rer_ain so since no aliases can be generated in the Event

cla .s). All statements in class Main are marked as safe.

)uring the first exploration done by JPF, the follow-

ing aliases (among others) will be uncovered. The refer-
en_ cs Main.new_evl, Taskl.eventl, and Task2.eventl

wil:: be aliased when taskl and task2 start running. Sim-

ilar y, the references Main.new_ev2, Taskl.event2, and
Ta &2.event2 will be aliased when taskl and task2 start

run ling Since the statements Ul and u2 (in bold in the fig-
ure have been marked as safe, they are not interleaved and

JPF does not find the deadlock. Still, JPF passes important

alie¢ information to the static analyzer.

I)uring the second iteration, some alias information, in-

clu, !ing the aliases concerning the fields eventl and event2
in toth Taskl and Task2 will be known to the static ana-

lyz_ r. Using this information, the analyzer can now mark
as _nsafe any statement accessing the fields eventl and
eve _t2 in both Taskl and Task2 (including statements ul

and u2). This results in only one safe statement in each of
the hread: the condition of the while loops.

qhis new information is then communicated to JPF

whi:h realizes it needs to take into account some additional

inte:ieaving. This results in JPF interleaving statements ul

and u2 and in the deadlock being found.

f States"ansitions

)eadlock

no p.o.r, p.o.r, p.o.r
't/,1, U 2 safe UÀ, u2 unsafe

866 339 432

1489 459 632

found not found found

Figure 4. State space reduction figures.

3 tble 4 shows the results of running JPF without partial

ordec reduction and with different information about safe

state: ments. Column 1 shows the results when JPF does not

use my partial order reduction. Column 2 shows the re-
suits obtained by JPF with partial order reduction using an

over y optimistic set of safe statements. Column 3 shows
the r :sults obtained by JPF with partial order reduction us-

ing, correct set of safe statements. Since the example is

quite small, JPF can find the deadlock without partial or-
der _eduction, but, to do so, it has to visit twice as many

state _ as when it performs partial order reduction with the
corrt ct safe statements. When the information about safe

state nents is incorrect (as in the first iteration) the deadlock

is nct found. But the discovery of aliases by JPF leads to a
corrt ct set of safe statements, and, JPF eventually finds the

dead ock after visiting roughly 100 more states.



5 Practical Considerations

Our technique relies on the fact that JPF always finishes

the exploration of a graph once it has started it. This is

not true in general either; explicit state model checkers of-

ten run out of memory before they can finish exploring the

whole space. If it is the case, our iterative technique will

perform an unsafe analysis. However, in its normal pro-

cessing mode, JPF would have run out of memory anyway.

So, the result of its analysis would be unsafe too. Therefore,

our method does not do worse than the normal processing

mode. We might even argue that it would cover a "more

relevant" state space before it runs out of memory.

A final important consideration is the fact that JPF, as

most explicit-state model checkers, stops _it the first error

it finds and returns with an error trace (in JPF's case, a

full execution trace). Therefore, by constraining the model

checker to stay within a confined state space (at each itera-

tion), we restrict the possibility of the model checker to get

lost in some uninteresting part of the state space. It would

be interesting to extend the static analysis so that the model

checker is guided towards critical areas first.

6 Conclusion

We have described an iterative process to perform soft-

ware verification using static analysis and explicit-state

model checking. Static analysis identifies safe statements

which are used by the model checker to perform partial or-

der reduction (thus increasing the chances of exhaustive ex-

ploration). The model checker performs state exploration

(using partial order reduction) and computes precise alias

sets used by the static analyzer to identify safe statements.

This work is innovative for the following reasons.

• It describes a framework where static analysis and

model checking work concurrently to improve the cov-

erage and the precision of software verification; we are

aware of only one other work [5] using model check-

ing and static analysis concurrently; but it is based on

abstract interpretation and abstract model checking.

• It describes an iterative process that computes unsafe

intermediate results until it converges to a safe result;

traditional research ideas in static analysis and explicit-

state model checking try to improve on safe solutions

by reducing the impact of the approximations.

• This method yields a solution that is much closer to the

optimal solution (both in terms of aliasing and partial

order reduction) than traditional methods.

However, we pay the price of losing some of the generality

in the results of the static analysis. Since we incorporate dy-

namic information, the results of the static analysis cannot

be re-used for different inputs (environment) of a program

as it was the case in the traditional linear process.

Our future plans are to improve the current implementa-

tic 1, to experiment with this technique on many more Java

pr_ grams, and to define a rationale for the duration of the

ire ation steps. Future improvements include the use of on-

de_ aand (or compositional) algorithms in the static analysis.

We expect that, as we experiment with other Java programs,

we might have to refine the distribution of work between

the static analyzer and the model checker. We will also con-

sid, :r other types of interactions between the model checker

anc the static analyzer, and possibly other techniques.
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